MATHEMATICAL MODEL OF HETEROGENEOUS REACTIONS

V. A, Kirakosyan and A. P. Baskakov UDC 669,2:8.66,094

We study theoretically the chemical transformation of spherical particles. Equa-
tions are presented which describe the time dependence of the degree of chemical
transformation of the original solid reagent and the reaction rate.

We consider the reaction of a spherical porous particle with gas or liquid in a suffi-
ciently general form, but limit ourselves to reactions which do not change the volume of the
particle.

The macrokinetics of the reaction will be represented as follows. The gaseous or liquid
reagent reaches the surface of the particle by convection. Subsequently, it diffuses in the
bulk of the scolid reagent and simultaneously reacts with it. The gaseous or liquid product
which is thus formed escapes from the reaction zone by diffusion and mass exchange into the
surrounding medium. In the course of the reaction, we neglect the change of volume of the
fluid reagent and also the kinetic and diffusion characteristics of the solid. At any point
the reaction proceeds until all reagent at this point is used up. As a result, starting from
a definite moment of time, a crust of the solid reaction product is formed on the surface of
the particle. The thickness of this crust increases as the reaction develops until all vol-
ume of the particle undergoes the reaction.

In the course of the reaction, the structure of the interior of the particle can change
qualitatively and, as a result, the diffusion coefficient of the gaseous reagent in the solid
product can differ from its value in the original solid reagent. In each concrete case, the
structure of the particle can change in a specific manner which is difficult to describe
analytically. Therefore, to simplify the problem and obtain quantitative estimates of the
effect of the change in the diffusion constant, we have, in the first approximation, assumed
that the diffusion coefficient remains constant in the whole reaction zone, and changes
stepwise in the transition from this zone to the zone of reaction products. Besides this as-
sumption, we also assume that the reaction is of the first order with respect to the fluid
reagent, the surface of the particle is equally accessible to it, and the diffusion obeys
Fick's law.

Under these conditions, until the crust of the solid product is formed on the surface
of the spherical particle (i.e., when the diffusion constant is constant in the volume of the
particle), the boundary-value problem for the non-steady-state diffusion can be written as
follows:
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where M, are the roots of the transcendental equation

s

fep= e (6)

According to our assumption that the reaction rate in an elementary volume of the parti-
cle depends directly on the concentration of the gaseous reagent in the given point, we obtain

the following relations for the rate G(r) and degree e£(v) of chemical transformation of the
particle:
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or, in the dimensionless form,
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Using these relations and expression (5) which describes the concentration distribution
of the gaseous reagent in the volume of the particle, we obtain the following equations for
G(t) and e(1):
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where M = p/coh.

Equations (7') and (8') are valid as long as there is no crust of the solid reaction
product on the surface of the particle. To determine the moment of time FO* = 1%Do/RE when
the crust is formed, we construct an equation for the balance of matter in an elementary vol-
ume on the surface of the particle., Denoting the instantaneous density of the solid reagent
in this volume by q{(Ro, T), we can write

dg(R;, 7) = — C(Ry, 7) Kohdr. )

Integrating (9) with respect to time and noting that for t = 0, we have q(Ro, 0) = p and 71 =
1% q(Ro, 1%) = 0, we obtain the following relation:
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Using Eq. (5) for r = 1 and in relation (9'), analyzing the values of the terms in the
series and integrating (9'), we obtain the estimate:
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If the fluid reagent is gas, the value of the complex M is sufficiently large. It fol-
lows from (10) that for M > 10* (which is valid for the majority of solid-gas reactions), the
moment when the crust of the solid reagent appears on the surface is determined, with accur-
acy up to 1%, by the following equation:

For . MV KcthV K+ Bi—1) (11)
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Equations (7') and (8') are not suitable for engineering calculations, An analysis shows
that, starting from some value Fo',

120(V Kcth VK +Bi— 1) | (12)
Bi (v K cth V'K —1)

the infinite series in these equations can be omitted since their contribution does not exceed
1%. A comparison of (11) and (12) shows that if 120K/ (/K cth /K - 1) < M (e.g., K< 6800 for
M = 10%*), the ratio Fo'/Fo* < 1. This means that before the crust is formed on the surface

of the particle, the sum of the series in expression (8') becomes negligibly small and can be
omitted. This makes it possible to determine the total degree of chemical transformation of
the particle at time Fo = Fo* from the simple equation

Fo' =

3(VKcthVK—1) (13)
K

It follows from expression (13) that €% » 1 for K+ 0 and €* > O for K~ ®, This means
that for large values of the combination KoR3/Do (practically for K > 10*), the reaction pene-
tration depth is very small and the reaction proceeds practically at the surface, where the
crust is formed immediately.

In a sense the ratio Fo'/Fo¥* = lZOK/M(/E cth VK — 1) characterizes the time dependence
of ¢ since for Fo > Fo', this dependence is linear (in agreement with (8') and the above an-—
alysis), and Eq. (8') itself is valid only for Fo < Fo*, For example, for the values K <
100 and M > 10,000 we have Fo'/Fo* = 0.044 and, consequently, the graph of the function € =
e(Fo) has a linear character practically from the beginning of the reaction (€ 0.0118) until
the moment of formation of the crust at the surface.

As we noted above, after the formation of crust of completely transformed solid reagent
at the surface, the diffusion conditions of the gas in the volume of the particle are changed
since the gas does not react with the crust. 1In addition, the gas diffusion constant in the
crust can differ from the original value,

By virtue of the above assumptions, the mathematical model of the reaction when a crust

of inert material exists can be written as follows:
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The appearance of an additional condition in Eq. (16) is due to the change of the diffu-
sion constant of the gaseous reagent in the particle from value Do to D; when the dividing
boundary X(Fo) between the materials before and after the reactien is displaced from the sur-
face of the particle inside the volume.

To solve the boundary-value problem (14)-(17), it is necessary te have an equation which
determines the position of X(Fo). The radius of this spherical boundary can be found from
the integral balance relation.

Fog.X) (18)

|\ Ke(X, Fo)dFo= M,
0

where Fo(X) is the moment of time in which the chemical transformation takes place at point
with coordinate X.

The system of equations (14)<(18) was solved numerically by using an implicit scheme on
nonuniform nets. We used here a driving method, taking into account the appropriate boundary
conditions. The algorithm of the solution was reallzed on a BESM-6 computer.
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The output parameters of the program of solution were the concentration fields of the
gaseous reagent, the position of the dividing boundary X(Fo), the dimensionless reaction rate
j(Fo), and the degree of chemical transformation of the particle £(Fo). The values of the
starting parameters K, Bi, m, and M were varied within the following wide limits: 1 < Bi <
1000; 1<C K <<5000; 0.0l <m < 100; 10°<C M << 2107,

In all variants under study, the calculated values of the quantities e¥* and Fo* agreed
to a high accuracy with Eqs. (11) and (13). In addition, it was established that the reaction
rate, the degree of chemical transformation, and the concentration fields depend practically
only on the combination Fo/M, and not on each of these variables separately.

In Fig. 1 we show the time dependence of the degree of chemical transformation of the
particle for Bi = 10, m = 1, and various values of the combination K. It follows from these
graphs that the time from the moment when the crust appears on the surface to the completion
of the chemical transformation depends weakly on the quantity K = KoR&/ Do

An analogous pattern is observed also for other values of Bi and m. Physically, this
is understandable. For small values of K, the reaction proceeds slowly. This is the reason
why the crust is formed late (the degree of transformation is sufficiently large). The con~
centration of the gaseous reagent in the volume of the particle 1s in this case sufficiently
large (Fig. 2). ¥For large values of K, on the other hand, the crust is formed early and the
reaction proceeds intensely. The time of its completion is therefore the same as in the
first case.

For given values of K the time from the moment of formation of the crust to the full
completion of the reaction depends strongly on Bi and m (Fig. 3). It is natural that for
Bi ~ 0 or m » 0 it tends to infinity. It is seen from Fig. 3, which is constructed for K =
49, that for Bi > 100 and m > 100, the mass release on the surface and the diffusion through
the crust of the reacted substance do not limit the rate of transformation of the solid re-
agent which is determined in this case only by the reaction in the core of the particle.

Information about the limiting stage of the process can be obtained also from the con-
centration fields of the gaseous reagent in the volume of the particle. TFor example, it fol~
lows from Fig. 2 that for one set of values of K = 49, Bi = 500, and m = 100 (curve 7), the
reaction rate is determined only by the rate of transformation in the core of the particle.
For Bi = 10 and m = 0.01 (curve 8), however, the reaction rate is determined by the diffusion
through the crust of the solid product, and for Bi = 1, m = 100, and K = 1000, mainly by the
intensity of the mass transfer from the surrounding medium to the surface of the particle.

Thus, it follows from Figs. 2 and 3 that the effect of the chemical reaction on the rate
of formation of the solid product is different for different values of Bi and m. For one
particular value of K, the chemical reaction can either slow down the process or not limit
at all the rate of formation of the reaction products.

An analysis of the results of the calculation showed that the thickness of the reaction
zone & under the crust of the reacted matter depends only on the combination K = KoR2/Do. It
can be estimated as

=X—y/T—e. (19)

where the quantity 3/1 — ¢ is the radius of some fictitious sphere which would be formed if
all the unreacted solid reagent was concentrated in its volume.

It is seen from Fig. 4 that the thickness of the reaction zone decreases with increasing
K and tends to zero as K > »., Practically, already for K = 5000 when the reaction depth is
0.015 Ro, one can assume that the reaction proceeds mainly on the dividing boundary between
the solid phases of the original reagent and the reaction product. Ve found the following
empirical formula for the thickness of the reaction zone:

3/ — —

6=X<1__—V1_3(VK)scthVKX—I)), (20)
KX2

which describes, with accuracy up to 1%, the results shown in Fig. 4.

The results of the numerical soluticn of the problem (14)-(18) for the calculation of
processes and instruments for the thermochemical processing of a multicomponent polydispersed
granular material are not always useful since the complicated procedure for the calculation
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Fig. 1. Change of the degree of chemical transformation with time after the appear-
ance of the crust on the surface of the particle for Bi = 10, m = 1, and various K.
Curves 1, 2, 3, 4, 5, and 6 correspond to K = 1, 10, 49, 100, 1000, and 5000, respec-
tively,

Fig. 2. Concentration field of the gaseous reagent in the volume of the particle.
Curves 1, 2, 3, 4, 5, and 6 correspond to X = 1, Bi = 10, and K = 1, 10, 49, 100,
1000 and 5000, respectively; 7) X = 0.5, m = 100, Bi = 500, X = 49; 8) X = 0.5, m =
0.01, Bi = 10, K = 49; 9) X = 0.5, m = 100, Bi = 1, K = 1000.

of the degree of transformation and the reaction rate must be carried out many times for dif-
ferent dimensions and state of the composition of the particles.,. The program for the calcula-
tion of the thermochemical transformation process is in this case hindered also by the fact
that the system of these equations must be solved gimultaneously with other equations which
describe the heat and mass exchange processes in the working volume of the instrument. It is
therefore more convenient to use approximate analytical formulas, corrected by taking into
account the results of the numerical solution.

To obtain an analytical expression which reflects the time dependence of the degree of
chemical transformation, one can use the solution of the present problem in the quasistation-
ary approximation [1]. This approach is justified by the fact that the mass of the gaseous
reagent in the pores of the particle is negligible in comparison with the mass of the solid
reagent. The change of concentration fields of the gas in the reaction process takes place
much faster than the motion of the reaction front, i.e., these fields practically do not dif-
fer from stationary ones.

Kirakosyan [1] obtained the functional dependence X = X(Fo) under the condition that
X/K > 3. Below, we have succeeded in solving this problem without this limitation. We ob-
tained the expression

_ Fo* e Xt — X3 1 hVK (VK cth VK —1
Fo—For 1 [1—x2 1—x7, 1=x 1 4 s/__K({(_c 15_) o
M m 2 3 3Bi K shVK X(VK Xcth VK X—1)
Calculations showed that if the equation
_ 3(VK Xcth VK X —1
o= 1—x [1 _ s J (22)

is used to determine the degree of transformation [this equation is obtained from (19) and
(20)1, the difference between (21) and (22) and the results of the mathematical model [Egs.
(14)-(18)] for the reaction does not exceed 10%. '

To improve the approximate method for the calculation of the reaction rate and the de- -
gree of chemical transformation still further, the form of the starting equations (21) and
(22) was changed somewhat. Calculations showed that if the dependence £ = g£(X) is represen—
ted as
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Fig. 3. Change of the degree of chemical transformation after formation of the crust
on the surface of the particle for K = 49 and different Bi and m: 1, 2, 3) m = 1,

Bi = 1, 10, 100; 4, 5) Bi = 10, m = 0.1, 0.01; 6, 7) Bi = 100, m = 10, 100; 8, 9)

Bi = 1000, m = 100, 1000,

Fig. 4. Dependence of the thickness of the reaction zone on the position of the re-
action front and the value of K. Curves 1, 2, 3, 4, and 5 correspond to K = 1, 10,
49, 100, and 1000. ’

7 7 v x1,5
e=1~X3{1__[ 3VK Xcth VK X—1) ] }

Xz
K (23)
and X(Fo) is represented by the equation
£ v ) — Yool
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the maximum deviation from the results obtained from the mathematical model (14)-(18) is 6%
for the dependence ¢ = e(Fo), and 8% for j = j(Fo). The function j(X) is here calculated using
the equation

mBiX (VK Xcth VK X—1)
mBi+ [Bi(l —X) +mX] (VK Xcth VK X —1)

i= (25)

It should be noted that this deviation is observed for variation of the starting parame-—
ters in very wide limits and, in addition, for large e (larger than 0.8). Thus, Egs. (23)
and (25), supplemented by (24), can be recommended for calculating the reaction rate and de-
gree of chemical transformation of the particle after formation of the crust of solid product
on the surface of the particle.

An analysis of the obtained dependences for e¢(To) showed that, in particular cases, they
can be used to obtain the corresponding equations proposed by various' authors [2-6] for the
description of the kinetics of heterogeneous reactions. For example, for large values of K
(practically for K > 5000) one can assume [see (11) and {(13)] that, starting from the very
beginning of the reaction, a crust of solid product is formed on the surface of the particle.
Consequently, in this case, (24) can be used from the moment Fo = 0. For the above values of
K, the reaction proceeds practically only on the boundary between the solid product and solid
reagent, and the dependence £ = £(X) can be simplified [see Eq. (23)]:

g=1—X3 (26)

In addition, calculations show that in this case, the last term on the right-hand side of
expression (24) can be replaced by (1 — X)/vVK, with an error of no more than 7%. Thus, after
some transformations, Eq. (24) yields the equation

T =

oR, [1—){ +<1~—X2 1——X3\) R, I-X3}. 27

Coh K., 2 5 ) T T
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Here Kn = VKoDo.

A similar formula as (27) was proposed in [2-4] for the description of the kinetics of
the reactions solid, + gas,; - solid, + gas, which proceed in a mixed (diffusion-kinetic) re-
gime. It is easily verified that Eq. (27) yields the equation for diffusion kinetics [5] if
Kn - w, B » », and chemical kinetics [6] if Dy » =, B = =, ’

The condition K > 5000 for which Eq. (27) is valid is conveniently written in the form
K Ro/D; > 70.7/m. Hence, it follows that if m = D,;/Do >> 1, (27) can be used in the calcu-
lations in the majority of practically interesting cases.

NOTATION

Co and C, concentrations of the gaseous reagent in the surrounding medium and in the
volume of the particle, respectively; Ro and R, radius of the particle and the radial coord-
inate; Do and D;, diffusion constants of the gaseous reagent in the reacting solid substance
and in the solid reaction product, respectively; Ko, reaction rate constant; h, stoichiometric
coefficient; G and j, reaction rate and its dimensionless value; X, dimensionless radial co-
ordinate of the reaction front; p , density of the solid reagent; ¢, degree of chemical trans-
formation; <1, instantaneous time; §, dimensionless value of the thickness of the reaction
zone; f, mass transfer coefficient from the gases to the surface of the particle.
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METHOD FOR INVESTIGATING HETEROGENEOUS PROCESSES IN A SOLID—SOLID
SYSTEM IN MULTISECTIONED V-SHAPED CONTINUOUS ACTION APPARATUS

N. V. Pen'kov, T. E. Stakhrovskaya, I. I. Shishko, UDC 66.047.8-932
G. A. Malykh, and N. B. Raskhovskaya

The process of contact drying of thermolabile materials by adsorbents in V-shaped ap-
paratus with periodic and continuous action is analyzed experimentally and theoreti-
cally.

There exists a wide class of thermolabile materials for which thermal drying is inapplic-
able. TFor many of these materials, the method of contact drying by adsorbents is effective
[1, 2]. However, up to the present time, under commercial conditions, such processes are
mainly carried out in continuous action mixers of the drum type (V-shaped, biconical, tetra-
hedral, etc. [3]), which have all the disadvantages of periodic action apparatus and, in ad-
dition, can lead to considerable polarization and erosion of the particles depending on the
physical properties of the material being worked. These disadvantages are partially absent
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